
32 The Delphi Magazine Issue 35

Call Me
Recursion, see Recursion

A
lg

or
it

h
m

s

A
lfresco

by Julian Bucknall

It occurred to me, as I read the
proof of June’s article on Ternary

Trees, that I was tossing around
willy-nilly sentences like ‘The algo-
rithm described is recursive,
although the recursion can be
fairly easily removed by use of an
explicit stack.’ And I would return
to the same theme over and over. I
suddenly thought, maybe some of
my readers don’t know how to do
this, or don’t know about when
recursion is good, when it is bad,
when to use it, when not to.
Enough, this instalment of Algo-
rithms Alfresco will concentrate on
recursion.

In The Flesh
So what is recursion? Simply put, it
is a routine that calls itself. Now, it
must be said, this definition leaves
a lot to be desired; after all, it
smacks of the infinite loop. Indeed,
recursion, if we are not very care-
ful, will certainly turn into a series
of never-ending calls that will even-
tually crash the application (be
warned: I forgot to add a stop
condition for one of the recursive
routines I was writing for this arti-
cle and, boom!, a nasty Windows
stack overflow and a frozen
machine). So, a recursive routine
must also have a terminating
condition to ensure that it doesn’t
continue calling itself, ad infinitum.

For those of you who did some
mathematics (I can’t be the only
one!), recursion is related to the
induction in ‘proof by induction’.
Proof by induction is when you
prove a particular theorem by (1)
proving it for a simple case (gener-
ally the theorem in question
relates to numbers, so the simple

case would be for the number 0 or
1) and (2) proving it for a general
case (ie you assume that it’s true
for all numbers up to N-1, and then
proving it for the number N, where
N > 1). The induction bit goes like
this: if you proved it for 1, then you
can prove it for 2, by applying the
second part of the proof, and simi-
larly for 3, 4, and as far as you want
to go. The theorem is said to be
proved true by induction. An exam-
ple is the proof that 1+2+3+...+N
equals ½N(N+1). Hint: it’s true for 1
(duh!) and if you assume that it’s
true for N-1, it’s fairly easy algebra
to show that it’s true for N.

So what? The important thing to
realize is that there’s a built-in
stop: the number 1 (or whatever
limit you use) is a special case. It
must be the same for recursive rou-
tines as well: there must be a built-
in stop condition.

Picture This
Let’s take a simple algorithm and
write a recursive routine for it.
Instead of using the hoary chestnut
of factorial numbers, we’ll use
Fibonacci numbers to illustrate
recursion. A Fibonacci number is
defined as follows:

F(0) = 1
F(1) = 1
F(N) = F(N-1) + F(N-2)

So the Fibonacci numbers form a
series: 1, 1, 2, 3, 5, 8, 13, 21, 34, ...,
where each number is the sum of
the previous two. Fibonacci num-
bers appear all over the place: in
nature the seeds in a sunflower
head form a Fibonacci sequence. In
mathematics we find the sequence

F(N-1)/F(N) approaches 0.618 or
()½ 5 1− as N tends to infinity, the

so-called ‘golden ratio’ much
favored by the ancient Greeks.
Also, the sequence F(N)/F(N-1)
approaches 1.618, or the golden
ratio plus 1. In computer data
structures there is a structure
called a Fibonacci heap which has
certain desirable properties.

Taking the definition, it’s easy to
cast it into the routine in Listing 1.
We can see intuitively that the rou-
tine will terminate and is not an
infinite loop, since each recursive
call to Fibonacci uses a smaller
parameter than it started with, and
we’re making an explicit check for
0 and 1.

So how does it work? It’s not
immediately obvious why it
should. Take N=3 for example. The
sequence of calls that gets done
can be viewed as a tree (or
visually, an outline) of calls:

Fibonacci(3)
Fibonacci(2)
Fibonacci(1)
Fibonacci(0)

Fibonacci(1)

In other words, to calculate
Fibonacci(3) we have to calculate
Fibonacci(2), which requires cal-
culating Fibonacci(1) and then
Fibonacci(0). And then back at the
‘3’ level, we need to calculate Fibo-
nacci(1) to finish it off. As we go
down the tree and return we have
to save and restore some partial
results for the recursion to work
properly. Where do these results
get saved? After all, the routine
doesn’t save anything explicitly.
The answer is: on the program

function Fibonacci(N : cardinal) : cardinal;
begin
if N <= 1 then
Result := 1

else
Result := Fibonacci(N-1) + Fibonacci(N-2);

end;

➤ Listing 1: A recursive Fibonacci number routine.

July 1998 The Delphi Magazine 33

stack. When we call the Fibonacci
routine recursively, the compiler
inserts some machine code to
store the partial results on the
stack before calling the routine,
and so they’re there and available
when we return (actually, in 32-
bits it turns out that it’s the called
routine which pushes registers on
the stack, but either way the effect
is the same). Bear this automatic
process in mind when we get to the
subject of removing recursion.

Some of you may already have
wondered why I’ve chosen such a
routine to illustrate recursion (two
recursive calls per call to the rou-
tine?). The reason is that calculat-
ing Fibonacci numbers by this
process is very slow and it would
be better not to use a recursive
routine at all. Why is it slow? To
answer this I wrote a small pro-
gram that counted how many
times the Fibonacci function is
called for various values. It is
instructive to peruse the results in
Figure 1.

We see that to calculate the 6th
number we require 15 calls to the
Fibonacci routine, for the 10th
number we need 109 calls. In fact,
to calculate the 36th Fibonacci
number (which is 14,930,352)
requires nearly 30 million calls and
takes over 4 seconds on my
Pentium 120. Pretty bad. The
reason? Well, look at the call tree
above and notice that we have to
calculate Fibonacci(1) twice, since
we’ve thrown away the result of
the first call. The larger the
number we start with, the more
intermediary results we discard
and have to recalculate.

As an aside: whenever you start
playing around with Fibonacci
numbers it is amazing how often
they start to crop up in whatever
you are doing. The number of calls
required to calculate Fibonacci(N)
is... (2 * Fibonacci(N)) - 1. The
proof is by induction.

The recursive Fibonacci routine
is an excellent example of when we
really need to remove the
recursion, or, in other words, to
rewrite it as some kind of loop so
that recursion doesn’t occur. In
the case of calculating the Fibo-
nacci numbers we can start from

N 0 1 2 3 4 5 6 7 8 9

Fibonacci(N) 1 1 2 3 5 8 13 21 34 55

Calls required 1 1 3 5 9 15 25 41 67 109

➤ Figure 1: Number of calls required to the recursive routine to
calculate Fibonacci numbers.

first principles to remove the
recursion. The routine in Listing 2
will do fine.

Notice that the loop just main-
tains two variables FibNminus1 and
FibNminus2 to hold the previous
two Fibonacci numbers. We never
have to recalculate them like in the
recursive version. As it happens,
this routine calculates the 36th
Fibonacci number too fast for the
clock to tick on my machine (if you
do compile this routine, notice
that it fools Delphi 3’s warning ana-
lyzer: it complains that the vari-
able FibN might not have been
initialized, and yet we’ve ensured
that the loop will be executed at
least once).

Heart Of Glass
From the above discussion, you’ll
probably be thinking that recur-
sion is always bad. Actually, no it
isn’t. Thinking of an algorithm in
terms of recursion often produces
an elegant design and elegant
code. Sometimes, we’ll find that
removing recursion either doesn’t
produce any benefit, or, if it does,
the code becomes a maintenance
nightmare and is probably not
worth it.

Let’s use another algorithm: cal-
culating an integer power of a
number. For example, to calculate

function FastFib(N : cardinal) : cardinal;
var
i : integer;
FibN : cardinal;
FibNminus1 : cardinal;
FibNminus2 : cardinal;

begin
if (N <= 1) then
Result := 1

else begin
FibNminus1 := 1;
FibNminus2 := 1;
for i := 2 to N do begin
FibN := FibNminus1 + FibNminus2;
FibNminus2 := FibNminus1;
FibNminus1 := FibN;

end;
Result := FibN;

end;
end;

➤ Listing 2: Calculating Fibonacci numbers with a loop.

1.250 involves multiplying 1.2 by
itself 49 times:

Result := 1.2;
for i := 1 to 49 do
Result := Result * 1.2

Right, so where’s the problem?
Actually, we can do better than
this. Think about it like this: to cal-
culate x4, we can either multiply x
by itself 3 times, or we can calcu-
late x2 (which is one multiplica-
tion) and multiply the result by
itself (another multiplication). We
have reduced 3 multiplications to
2. Larger powers would reduce the
number of multiply operations
even more. This algorithm is an
example of a divide and conquer
technique: we recast in terms of
smaller numbers and thereby
make it more efficient. We can
posit our rules for the algorithm to
calculate xn as follows:

x0 = 1
x1 = x
if n is even then xn = (x2)n/2

if n is odd then xn = xn-1.x = (x2)(n-1)/2.x

In other words, if n is even we cal-
culate the square of x and then
raise that to the power n/2, and
there’s a similar process if n is odd.
Looking at these rules, we see that

34 The Delphi Magazine Issue 35

we either produce an answer
straight away (n = 0 or 1) or we can
recast it in terms of (n-1)/2 or n/2,
in other words, reducing the scale
of the problem by a half until we
reach the limiting cases, 0 and 1.
Incidentally, we manage to avoid
an infinite loop again.

Producing a recursive routine
out of these rules is simplicity
itself, please refer to Listing 3. For
our example of 1.250 we have to call
the Power routine 6 times (for N =
50, 25, 12, 6, 3, 1) and there will be 7
multiplications done (when N is
odd, two multiplications are done,
when even, only one). Compare
that with the original 49
multiplications.

Notice how easily the rules we
had were converted into actual
recursive code; the reason is, of
course, that we originally stated
the rules recursively. Anyway, the
algorithm is very efficient: every
time we recursively call the rou-
tine we do so with a number half
the size it was when the routine
was called. We’ve converted an
algorithm that required a number
of multiplications proportional to

function Power(X : double; N : cardinal) : double;
begin
if (N = 0) then
Result := 1.0

else if (N = 1) then
Result := X

else begin
if Odd(N) then
Result := Power(X*X, (N-1) div 2) * X

else {N is even}
Result := Power(X*X, N div 2);

end;
end;

➤ Listing 3: Raising a number to an integer power.

routine TailEndRecursion(Parameters)
if Parameters have reached Limit
do final stuff

else
do stuff
call TailEndRecursion(smaller Parameters)

end

➤ Listing 4

routine TailEndWithLoop(Parameters)
Finished = false
while not Finished do
if Parameters have reached Limit
do final stuff
Finished = true

else
do stuff
make Parameters smaller

end

➤ Listing 5

N, to one that requires a number
proportional to logN.

Atomic
The Power routine we have created
is an example of ‘tail-end
recursion’. This means that the
recursive call to itself occurs at the
end of the routine: after we call it
recursively there’s no other code
to execute and we return immedi-
ately to our caller. In pseudo-code,
a tail-end recursive routine looks
like Listing 4.

The reason for making a fuss
about tail-end recursion is that it is
generally easy to remove. Look at
the pseudo-code for the tail-end
recursion. At the recursive call to
TailEndRecursion, there is no
longer any need for the original
Parameters, after all, immediately
we regain control after the recur-
sive call we shall return to our
caller. So we can remove the recur-
sion quite simply by use of a
dreaded goto: change the parame-
ters for the smaller case and then
jump to the top of the routine. But
of course, since we are all follow-
ers of Edsger Dijsktra, we get rid of
the goto by means of a flag (see
Listing 5).

Bingo! No more recursion. No
more needless calling ourselves
again and again; instead: a nice fast
loop.

So, let us apply this method to
our recursive Power function. The
first thing to note is that the recur-
sive Power routine has two tails, so

we need to remove them both. The
tail when N is even is the easiest to
remove: we multiply X by itself and
divide N by 2, and then go round
the loop again. The tail when N is
odd is a little more involved. Think
about how the recursive version
works: we need to multiply X by X
squared to the power of (N-1)/2. If
we accumulate the powers of X so
far in Result, then all we need to do
is to multiply X by Result and store
the answer back in Result. When N
is zero, we’re done and Result
holds the correct value. When N is
1, we need to multiply X by Result
and return that answer. I came up
with Listing 6, which when cleaned
up made Listing 7 (note that, in this
latter listing, I’m making use of the
fact that if N is odd, N div 2 is the
same as (N-1) div 2).

Having seen how to remove tail-
end recursion, we’ll now consider
the harder case when recursion
occurs in the middle of the routine.

Dreaming
Time for a story. In Hanoi, there is a
secretive sect of Buddhist monks
who are engaged on a mission.
They have a tower of 64 disks, each
of differing widths, stacked in one
pile so that no disk is on a smaller
disk. The disks are in fact threaded
on a pole (each disk has a hole in
the middle like a Polo or a Life-
saver). There are two other poles.
Their job is to move all the disks
from the original pole to another,
one at a time. Each disk, when
moved, must be threaded on a pole
such that it doesn’t cover a disk
that is smaller. Once they com-
plete the job (and they’ve been
doing it, man and boy, for a very
long time), Buddha will bring
about the end of the universe.

Let’s ignore the possibility that
the end of the world is nigh, and
concentrate on seeing how to do
the job. Let’s assume we have
devised an algorithm (with many,
many moves) with which we can
move a stack of N disks from one
pole to another. Calling the poles
A, B, and C, with A as the original
and B as the target, all the monks
have to do is to move the 63 small-
est disks from pole A to pole C,
move the largest 64th disk from

July 1998 The Delphi Magazine 35

function FastPower(X : double;
N : cardinal) : double;

var Finished : boolean;
begin
Result := 1.0;
Finished := false;
while not Finished do begin
if (N = 0) then begin
Finished := true;

end else if (N = 1) then begin
Result := X * Result;
Finished := true;

end else begin
if Odd(N) then begin
Result := X * Result;
X := X * X;
N := (N-1) div 2;

end else {N is even} begin
X := X * X;
N := N div 2;

end;
end;

end;
end;

➤ Listing 6: Power routine with
recursion removed, but messy.

function CleanFastPower(X : double; N : cardinal) : double;
begin
Result := 1.0;
if (N = 0) then Exit;
while True do begin
if Odd(N) then
Result := X * Result;

if (N = 1) then Exit;
X := X * X;
N := N div 2;

end;
end;

➤ Listing 7: Power routine with recursion removed and cleaned up.

pole A to pole B, and then move the
63 smallest disks from pole C to
pole B. To move the 63 smallest
disks the first time, they first have
to move the 62 smallest disks from
A to B, then move the 63rd disk to C
and then move the 62 smallest
disks to C. And so on, so forth,
down to 1 disk. With one disk the
solution is easy, we move it from
the pole it’s on to the pole it needs
to be on. Poof, the end of the world!

Well, this algorithm calls out for
recursion, so let’s do it. What we’ll
do for a ‘move’ in our routine is to
write out the disk number and how
it’s to be moved. Listing 8 was my
result. If you look at it, you’ll see
that I pass the number of disks to
move and I define each pole
according to its function. There’s
the FromPole where the disks cur-
rently reside, the ToPole where I
want them and the other pole is the
SparePole which can be used to
temporarily hold some disks. The
routine follows the algorithm I
described, exactly. Listing 9 shows
the result of calling Hanoi(3, ‘A’,
‘B’, ‘C’).

If you follow this with three coins
of different sizes, you’ll see that it
is correct. For fun, I timed how long
it would take, on average, to move
a disk on my machine (in other
words, I’m really timing the time it
takes to output the string to the
console, since that will swamp the
time for the recursive calls, etc). It
was about 2.6 milliseconds. Given
that it takes 2n - 1 moves to move n
disks (proof by induction), it would

procedure Hanoi(N : byte; FromPole, ToPole, SparePole : char);
{move N disks from FromPole to ToPole using SparePole as a spare}
begin
{if there's just one disk, move it}
if (N = 1) then begin
writeln('Move disk 1 from ', FromPole, ' to ', ToPole);

end else {move more than one disk} begin
{First: move N-1 disks to SparePole, using ToPole as the spare}
Hanoi(N-1, FromPole, SparePole, ToPole);
{Second: move the Nth disk}
writeln('Move disk ', N, ' from ', FromPole, ' to ', ToPole);
{Last: move N-1 disks from SparePole to ToPole, using FromPole as
the spare}
Hanoi(N-1, SparePole, ToPole, FromPole);

end;
end;

➤ Listing 8: The Tower of Hanoi recursive solution.

Move disk 1 from A to B
Move disk 2 from A to C
Move disk 1 from B to C
Move disk 3 from A to B
Move disk 1 from C to A
Move disk 2 from C to B
Move disk 1 from A to B

➤ Listing 9

take well over 1.5 billion years to
bring about the end of the world on
my PC. We’re safe.

Rip Her To Shreds
All right. Now I’ve saved the
universe, back to work. The first
thing to notice about the Tower of
Hanoi recursive routine is that it is
partly a tail-end recursion. We
could remove that part quite
simply (I won’t show the result
here though: see if you can do it).
The problem though is the first
recursive call to Hanoi. How do we
get rid of that?

Recall at the beginning when I
told you how recursive routines
work at the machine level. The
compiler inserts code to push the
current data on the program stack
before recursively calling the rou-
tine. Well, that’s how we remove
recursion for a recursive call in the
middle of the routine: we simulate
a stack.

We’ll need to push and pop 4
values from the stack at a time: the
disk number (or disk count), and
the from, to and spare pole names.
We rearrange the routine slightly
to use our stack in a loop: each time
round the loop we pop something
off the stack and that tells us what
to do for that iteration. In pseudo-
code, it looks like Listing 10. Notice

that the two recursive calls are
pushed onto the stack in reverse
order: a stack is a LIFO structure
and as we want to process the first
recursive call first, we must push
its data last. The only other hack is
that we must push something onto
our stack to prompt us to make a
move. To make a move we only
need the disk number and the from
and to poles, so we’ll use a special
value in the spare pole data item. If
you look at the pseudo-code, it’s as
if we’ve turned the original Hanoi
routine upside down. In fact, if we
removed the recursion using a
queue (a FIFO container) we would
have the routine doing things in
the same order as the original.
However, it’s easier and quicker to
simulate a stack as we’ll see.

There’s one burning question
left. How big should the stack be?
Think about the original problem:
before we can move N disks, we
have to move N-1 disks, and before
that, N-2 disks, and so on. Translat-
ing this into our stack-based

36 The Delphi Magazine Issue 35

Hanoi routine(Parameters)
push Parameters onto stack
while stack is not empty do
pop Parameters
if the disk number is 1 or it's special
write out the move

else
push Parameters for 2nd recursive call
push special Parameters for move
push Parameters for 1st recursive call

endwhile

➤ Listing 10: A pseudo-code stack-based Tower of Hanoi solution.

procedure StackHanoi(N : byte; FromPole, ToPole,
SparePole : char);

{move N disks from FromPole to ToPole using SparePole
as a spare}
type
TParam = record
pN : byte;
pFrom, pTo, pSpare : char;

end;
var
Stack : array [0..127] of TParam;
SP : integer;
P : TParam;

begin
SP := 0; {clear the stack}
{push our parameters onto the stack}
with Stack[SP] do begin
pn := N;
pFrom := FromPole;
pTo := ToPole;
pSpare := SparePole;

end;
inc(SP);
{while the stack is not empty...}
while (SP <> 0) do begin
{pop the stack}
dec(SP);
longint(P) := longint(Stack[SP]);
{if the disk number is 1, or it's a move, move it}

if (P.pN = 1) or (P.pSpare = #0) then begin
inc(MoveCount);
writeln('Move disk ', P.pN, ' from ',
P.pFrom, ' to ', P.pTo);

end else begin
{push the parameters to move N-1 disks from the
spare to the to pole}
with Stack[SP] do begin
pN := P.pN - 1;
pFrom := P.pSpare; pTo := P.pTo; pSpare := P.pFrom;

end;
inc(SP);
{push the parameters for the move}
with Stack[SP] do begin
pn := P.pN;
pFrom := P.pFrom; pTo := P.pTo; pSpare := #0;

end;
inc(SP);
{push the parameters to move N-1 disks from the
from to the spare pole}
with Stack[SP] do begin
pn := P.pN - 1;
pFrom := P.pFrom; pTo := P.pSpare; pSpare := P.pTo;

end;
inc(SP);

end;
end;

end;

➤ Listing 11: The stack-based Tower of Hanoi routine.

routine, we push 3 items onto the
stack and pop 1 every time round
the loop until we get down to disk
number 1. That’s two pushes per
disk. So, for 64 disks the stack
should be 128 items in size (and do
note that we’ll never use them all
because it just takes so long to do
that many).

In Listing 11, notice how we
declare a type to hold the parame-
ters for a single invocation of the
original routine, and the stack is a
simple array of 128 elements of this
type. The stack pointer is an inte-
ger, SP, that denotes the top of the
stack. Pushing onto the stack
involves setting the fields of the
element at SP and then increment-
ing SP. Popping the stack involves
decrementing SP and then access-
ing the element at SP. If SP is zero
the stack is empty. The rest is easy
to follow, using the pseudo-code in
Listing 10 as a guide.

So was it worth it to remove the
recursion in the Tower of Hanoi
puzzle? The first, and most obvi-
ous, point to make is that the

stack-based routine is a nightmare
to look at. You have to have a
pretty good idea what it’s doing
before you can begin to under-
stand what’s going on. Compare it
with the original recursive routine:
the latter is concise and elegant.
Visualizing the process that’s
being done by looking at the first
routine is easy; it’s harder to see
that the stack-based routine
works.

The second, more telling point,
is that the stack-based routine is
slower. There’s just so much extra
work going on. I commented out
the code that writes the moves to
the console, and then timed both
routines on a tower of 25 disks. On
my machine, the recursive routine
took 7.6 seconds and the stack-
based routine 14.2 seconds, taking
85% longer.

Rapture
What conclusions can we come to?
Firstly, if the algorithm you’re con-
sidering calls out for a recursive
routine, write one. Secondly, if the

routine has a tail-end recursion,
remove it and replace it with a
loop. Test to see whether you’ve
managed to speed it up. Thirdly, if
the recursive call is in the middle
of the routine, leave well enough
alone. The recursive routine will
probably be faster than one using
an explicit stack and it certainly
will be easier to read and maintain.

Union City Blues
I have a confession to make. When I
started this article I thought I knew
all there was to know about recur-
sion. After all I’d been using the
technique since the old Turbo
Pascal days, and therein lay the
problem. In the old days, you had a
limited amount of program stack. If
you had a process or routine that
used a lot of stack, alarm bells
were supposed to ring in your
mind and you had to rethink some-
thing. One of the classic examples
was a standard binary search tree,
one without any balancing algo-
rithms. Traversing such a tree
which had degenerated into a
linked list using a recursive algo-
rithm was likely to blow your
stack, and you had to rethink the
problem (either using balancing
algorithms during insert and
delete, or traversing with the use
of an external stack on the heap).
In 32-bit Delphi programming,
your stack is a default of 1Mb in
size (compare that with BP7 real
mode’s default 16Kb stack) and so
these problems don’t surface all
that much any more.

July 1998 The Delphi Magazine 37

So, I’ve changed my position on
recursive routines, especially
those containing recursion that
cannot be categorized as tail-end
recursion. I would now leave such
routines as recursive.

The code that accompanies this
article is freeware and can be used
as-is in your own applications,
several times.

Julian Bucknall often gets a sense
of déjà vu, sometimes when he’s
already having a feeling of déjà
vu. One of his cats has a nickname
of Ari, but none of them are called
Debbie. He can be contacted at
julianb@turbopower.com
© 1998 Julian M Bucknall

Errata
A user of my EZDSL data structures library pointed out an error in the
implementation of its hash table class. Since I derived it from the hash
table I wrote for my February and March 1998 articles in The Delphi
Magazine, I thought I should pass it on. In the hash table, I was using an
external hash function to return an unsigned 32-bit integer. Dear old
Delphi still doesn’t have one (we’ll see about Delphi 4), so the hash rou-
tine was in fact returning a longint. The htlHash method in the class took
this value and performed a MOD operation with the table size to obtain
an index into the hash array. Normally, well in mathematics anyway,
the modulus operation will produce a value between 0 and one less
than the divisor. Well, I’d completely forgotten that Delphi’s MODopera-
tor, when presented with a negative number, will produce a negative
result. And, as far as the compiler was concerned, the result of the hash
function was a signed integer, no matter what I might have thought it
was. The result was an attempt to access an element of the table at a
negative index. The solution is to normalize the result of the MODopera-
tor (if it was negative) by adding the table size. If you download EZDSL
3.01 from my website (www.home.turbopower.com/~julianb) then
you’ll have the corrected version.

Talking of hash tables, TurboPower has just released version 2 of Sys-
Tools. Whilst preparing for it, TurboPower’s Gary Frerking discovered a
peculiarity about the hash function being used by SysTools’ string dic-
tionary class, and I confirmed it with a test program. If the hash func-
tion was presented with a set of independent strings (in other words,
they tended not to look like each other) then the hash function pro-
duced a nice spread of values with approximately the right number of
collisions, as predicted by theory. However, if the hash function was
presented with strings with a high degree of similarity instead (in
essence differing in just a few characters) then the number of collisions
in the returned values went way up. The hash function broke down. I
replaced it with the ELF hash function which I used in my articles. This
hash function is much better behaved in the latter situation.

Finally, the author of Algorithm K (see my May article on random
numbers), got in touch with me. He was most gracious and thanked me
for showing the problem with the algorithm. I too can be gracious if
you see a problem with my articles, and I’ll write them up in a sidebar
like this. But, you’ve got to let me know first!

	In The Flesh
	Picture This
	Heart Of Glass
	Atomic
	Dreaming
	Rip Her To Shreds
	Rapture
	Union City Blues
	Errata

